
USA IS E c AD-A268 098U USA I S E C "" l •"l'Jl,"
US Army Information Systems Engineering Comma.-id
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS. AND COMPUTER SCIENCES

DTIC
S ELECTE

AUG12 1993.

C
Evaluation of DCDS for Meeting the

Data Collection Requirements for
Software Specification, Development,

and Support

February 1991I

ASQB-GI- -

93-18854
3 ;854S^•o~~oo= .i I , illlII ~~,I, •111111

AIRMICS 3

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800 JtI% A

uICLAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
9

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

',NCL ASSIFIED

REPORT DOCUMENTATION PAGE 1K$.
iii R rVO RT SECURI TV CLASSIFICATION Tlir Hi-T IICIT. I M,\RKTNWS

UNCLASSIFIEDI w
Src SCRITY CI ASSIII[CATION At TI]ORMT IT> Vkll IAN) -AIAINII~l OF kI'I IPI

N/A
2b DECLASSJFICAT ON I)OUVVNCRADIiNGiSCiTFkITF

NVA

P I: ill-ORMINOi ORGANI/AIiON REPORT NI'MRF14,q %1N T PN T4I I.A iPITN 1111 1'

ASQB-GI-9 1-009\\

6a NAME OF FFIRFOIIMINGi OR(iA',i7AiiON !App1 YHO %~f
Purdue Universitv / SERC NA

6L. ADDRESS C.,y. -~~ d ZIP CodH ,A)IT~ r/VSI

Department of Computer Science1
West LaiFa~ette, Indiana 4791i N

NAME H1- i:t ',DIN; SPONSORING ~ IOFSMl) HI'il51N \18 'iN i-iITSIj

8, AD)DRESS ýC,!. S-ý, -d ZIP Cod,ýI ~ *i ,'*H IH

1 15 O'Keefe Bldg.V , TN'sI'1 1

Georgia Inr'H;ute of Tecilnolog%
Atlanta. GA 3U1 3,2-0800 A- 1Y I 1>1 -I

FTTT.F 1 1 . IC S' L- I. ' T5 1o

E~a I .IXtI (,: o ! DCDS for %1eetini-,'one Dmai(ollection Requpirernewn,1' 5
I15 r

Specil cjaor:. Development, and Suppori R NCLA SiI f I P

2 PLRSON.4I Al, I ii0R(Ss

Dunsmore, Buster. \'arnau. Stese

134 TYPE of RFI'(IT)Tjýi (-IEi . 'o Ri IPOPR 'Car ISb's TI. PAGE CII

final report FROM. 7-VI7\ 1

5SIPFP,JIMIVIS) 'HIXýiO-iION

ITEJ D PotTOT Si(Ii-GRrI;F F'(ee~ 1, EN S. SAeIC U 1':': is'a~rC nit CO'S TS

TIeTt 'systemns; SEES, Adi P iPTiTII1Il, / i tI FnvirI ln-vi . \PISFI

V'lis techrical report consists , I 1,%v cparateil huit related rep-r lkT' h-TisJ C'.i' TiC Ih Dp i):srd'iiid (n ý Ir '*'

Design Sý siem I DCDS) DCDS A~a, deveiloped h\ TR\\ :ý a I itj.kkjr des ClrmewITT erwnns n kTIOOCS IT Il -,I.

distributed ss stems. The prinipl onvesilgaior evaluated D(: [US Iis :,'rm- . a) it, Lia crillecLis Iel '. T'nI

b) its Software development information cTompletenes,. () it' usah~ihti, dI hIII8 I,, comparelC !l) five LITOST' er:Ti
available CASL tools, and e) Itis suitability as an Ada Progr,-mmlntrg S' ppo 1 isv~r-oriientT IA PS [I

NUTS-slOTE] ITSIiTSST~ IT E]J Tll I SFPS I %, l-V'S'lll If)

Howard C ''ButLC" Hi 'leý i4tI4i xl4-- 1 hIl ASQI3 -(;
DD FORM 1473, J4 MAR M'I lA~~ "S lC 5~ a,,A, i RT /IS. 'AI'A

-12- 'tiTI

The research herein was performed for the Army Institute for Research in Management
Information, Communications, and Computer Sciences (AIRMICS), tht RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC). The sponsor ti
the project was the Office of the Director of Information Sstems for Command, Control.
Communications, and Computers (ODISC4). The principal investigator was Dr. H. Duns-
more of Purdue University.

This research report is not to be construed as an official -\rmv position, unless so
designated by other authorized documents. Material included herein is approved for publik
release, distribution unlimited, and is not protected b% cop. right laws. Your comments on
all aspects of the document are solicited.

Ai

SI

d- I Ur,_

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/, s,,- ld

aI

Glenn E. Racine John R. Mitchell
Chief Director
CISD AIRMICS

I
,, Sac~tonIm,

N,1

p

Foreword 4

The following final technical report consists of five separate but related reports which evalu-

ate the Distributed Computing Design System (DCDS). DCDS was developed by TRW as a

software development environment for real-time distributed systems. The purpose of the

project was to evaluate DCDS in terms of a) its data collection requirements, b) its software

development information completeness, c) its usability, d) how it compares to five commer-

cially available CASE tools, and e) its suitability as an Ada Programming Support Enl iron-

ment (APSE).

The five reports included herein are:

1. Software Development Information Supported by the Distributed Computing Design
System (DCDS). Pages I-1 thro'igh 1-21.

II. Software Development Information Completeness in the Distributed Computing Design 0
System (DCDS). Pages II-i through I1-6.

iMi. An Evaluation of DCDS. Pages Ill-1 through 111-24.

IV. A Usability Comparison of DCDS with Five Popular CASE Tools. Pages IV-1 through

IV-7.

V. Conclusions on the Suitability of DCDS as an Ada Programming Support Environment

(ASPE). Pages V-I through V-6.

-14- ,ortion I

.i't im I

Software Development Information
Supported by the a"

Distributed Computing Design System (DCDS)
4,

S. Varnau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC-TR-85-P
January, 1991

Technical Report 3.3 from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract * 0

In this paper w,; examine the Distributed Computing Design System (DCDS)
and evaluate it according to data collection requirements for CASE systems that we
have previously developed. Our data collection requirements categorize and define
what information a standard CASE environment needs to collect.

DCDS scored extremely well on our data collection criteria. Its overall mean
score of 3.2 leads us to the conclusion that DCDS is an "Adequate" software
development environment. This is particularly impressive when compared to the "best
case" mean 2.2 for the 5 CASE tools EPOS, Teamwork, Excelerator, DesignAid, and
SA Tools.

DCDS is impressive in several regards: It is flexible, with extensible languages
used to build entity-relationship type databases. In addition, we were impressed with
DCDS' detailed attention to software development processes. But, DCDS also has
some deficiencies that we discuss in this report. Such issues will be explored more
fully in the next phase of our work in which we will suggest modifications and
enhancements to DCDS.

I

- 15- .F~ortjm Ii

-2-SetionI

Background

In our previous work, we identified data collection requirements for CASE
systems [VARN9Oa]. The focus of that research was to describe an environment useful
and flexible enough to become a standard. Such an environment must have the
flexibility to grow, evolve, and specialize. Basic to this viewpoint are portability, open
architecture, and data collection. Many tools may be added to an environment,
enhancing functionality, but they all need to be able to operate on the project data. Our
data collection requirements categorize and define what information a standard CASE
environment needs to collect.

We now evaluate the Distributed Computing Design System (DCDS) according
to those requirements. DCDS consists of tools that interact with entity-relationship
type databases. Each database is built using a language nucleus. DCDS has five
different languages which the user may extend. He may also create his own language.
Each one of the languages corresponds to a detailed methodology, which is part of the
overall development process. A template processor provides the user a means to define
reports and new (or modified) methodology screens.

Results

Below we present a comparison of the relative use of the data requirements
identified in [VARN90a] and reprinted in the Appendix to this paper. The DCDS
results are presented in conjunction with several sources surveyed earlier in this project
IVARNg0bI. The Henderson/Cooprider column represents data requirements identified
from a report describing a functional view of CASE technology IHEND88]. The CASE
tool column represents a "best case" combination of all the CASE tools studied in a
previous phase of this research [VARN90a]. For each category, the score given is the
maximum score of all five tools in the previous report. The best cases of those popular
tools reflect current technology. The SEI questionnaire column represents data
requirements needed to support modern software engineering techniques as described in
the SEI questionnaire [HUMP87I.

The DCDS column is the most recent data. It was obtained after the categories
were refined in the earlier portions of this study. DCDS was researched more than the
other sources, but every attempt was made to judge it fairly against the others. Any
bias error should be no greater than the error introduced by the granularity of the rating
scale used. The purpose was not to get exact measures, but to view general strengths
and weaknesses from the data collection viewpoint.

ip

- 1 - .1'CtLc1(I

3 -Setirl I

The following scale is used to indicate how completely each requirement is met,
or is used by each source.

- == No support at all or not addressed by tool (equivalent to 0)
1 = Possible to incorporate information, but not specifically supported
2 == Category addressed, but not fully supported
3 Adequate
4 Exceptional treatment of category
5 == Could not be better

Note that just because two items receive the same number for the same
category, this does not mean that they arc functionally equivalent for that category. For
example, both the CASr, Tools and the SEI Questionnaire rate a 3 for the category
Description/Implementation below. This does not mean that the CASE Tools and the
SEI Questionnaire have identical methods by which the developer can describe the
relationships among planned and implemented components - only that we consider the
Description/Implementation category as "Adequate" for both the CASE Tools and the
SEI Questionnaire.

,17-

4- Section I

PRODUCT - Description

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCDS
Functionality 3 4 2 5
Interfaces 2 4 2 4
Performance 3 4 3 4
Time Constraints 1 3 1 4
Fault Tolerances 1 2 1 4
Data Flow 3 4 1 3
Process Flow 3 4 1 4
Resources 1 3 1 4
Structure 4 4 1 4
Entity-Relation. 2 3 1 5
Communication 3 4 2 4
Data 3 3 1 4
Req./Design 3 3 3 4
Design/Perf. 3 2 2 3
Descrip./Impl. 4 3 3 4
Design/Design 1 3 2 3
Prototypes 2 2 3 3

Mean Scores 2.5 3.2 1.8 3.9
Range 1-4 2-4 1-3 3-5
Inadeq. Potage. 41% 18% 76% 0%

Note that the Mean Scores average the ratings for each item
(Heiidcr'scon/Cooprider report, CASE Tools, SEI Questionnaire, and DCDS) for all
categories. The Range gives an idea of the variability of that item across all categories.
The Inadeq. Pctage. line reports the percentage of all ratings for each item that are 0, 1,
or 2 (instead of 3, 4 or 5) and thus judged to be inadequate.

The "best case" from the 5 CASE tools we analyzed scored well in this area.
This should not be surprising, because such tools generally focus on analysis and
design. Even the best, however, fall short in complex areas such as fault tolerance.
DCDS showed phenomenal results owing to its detailed methodology and the stringent
domain of distributed, real-time computing. Functionality is fully captured in detailed
requirement and specification methodologies. Entity-Relationship data is easily
captured, because DCDS is built around entity-relationship-attribute type databases.

Note that the DCDS mean score of 3.9 gives it an overall rating in the product
description category just below the 4 (i.e., "Exceptional") level.

1,p

PRODUCT - Implementation

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCT)S
Actual Product 3 3 1 3
Metrics 2 1 3 2
Library 4 2 2 3
Templates 3 3 1 3
Compile Param. - - 3
Average 2.4 1.8 1.4 2.8
Range 0-4 0-3 0-3 1-3
Inadeq. Pctage. 40% 60% 80% 20%

DCDS performs reasonably well in the product implementation categories. It is
the first source we have seen that addresses the Compile Parameters category. DCDS
fails to reach adequacy only for the Metrics category, but still scores better than the
"best case" of other CASE tools.

i*

-6- qSrtion I

PRODUCT - Verification

a

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCDS
Test Plan 3 3 4
Test Tools 2 4 2,
Test Suites 2 4
Status 1 3 4
Errors Found 1 2 3 4
Ver./Descrip. - 2 2 5
Analysis 1 2 4 2
Average 0.3 1.4 2.7 3.9
Range 0-1 0-3 2-4 2-5
lnadeq. Pctage. 100% 86% 43% 14%

The SEI questionnaire is fairly strong in this area, especially stressing analysis
of project data. DCDS, while not doing so well on analysis, does very well with its
Test Support Methodology.

*

-7- Sc~a

PRODUCT - Maintenance

Category Heulderson/Cooprider CASE Tools SEI Questionnaire DCDS
Maintenance History 2 2 2 2
Special Cases - 1 2
Complaints - 3 1 1
Proposed Changes - 3 1 3
General Information - - 2
Average 0.4 1.8 0.8 2.0
Range 0-2 0-3 0-2 1-3
lnadeq. Pctage. 100% 60% 100% 80%

DCDS focuses on software development. It ignores most maintenance issues.

t 0

-8- Sactii• I

PROCESS - Management

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCDS
Schedule 4 4 3 3 4'
Budget - 3 3 2
Pers. Assign. 4 3 2 1
Environ. Custom. 2 2 1 4
Format Parameters 3 4 - 5
Process Plan - 4 4
Average 2.2 2.7 2.2 3.2
Range 0-4 0-4 0-4 1-5
Inadeq. Pctage. 33% 33% 50% 33%

DCDS deals with traditional management issues indirectly, as development risks
or constraints. Format parameters, environment customization, and emphasis on
process planning are DCDS strong points. While DCDS has rich standard
methodologies, they are flexible enough to be modified or even changed completely.

I 0

iI

PROCESS - Coordination N

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCDS

Project Direct. 3 3 1 4
Configuration 3 3 3 1
Standards 3 4 3
Communication 3 1 1 1
Commun. Formats 3 - 1
Average 3.0 1.4 1.8 2.0
Range 3 0-3 0-4 1-4
lnadeq. Pctage. 0% 60% 60% 60%

Although DCDS maintains an elaborate set of databases, it is not a strong
performer in the areas of multi-user support and version/revision control. Security is
virtually not addressed by DCDS.

t0

S10- etion I 1

PROCESS - Quality Control

at,

Category Henderson/Cooprider CASE Tools SEI Questionnaire DCDS
Quality Goals 3 - 1 3
Fault Conseq. - 2 1 2
Target Environ. 2 1 3
Inspections - 4 2
User Input 2 1 - 3
References 3 2 - 4
Project History 1 1 4 1
Average 1.6 0.9 1.6 2.6
Range 0-3 0-2 0-4 1-4
Inadeq. Pctage. 71% 100% 71% 43%

DCDS performs much better than the typical CASE tool in the Quality Control
categories. But, it still could do much better in several such categories (e.g., project
history, fault consequences, inspections, and user input).

0

sectý I

SUMMARY

The table below summarizes the mean scores from the previous 7 tables:

MIT CASE SEI DCDS Category

2.5 3.2 1.8 3.9 Product Description

2.4 1.8 1.4 2.8 Product Implementation

0.3 1.4 2.7 3.9 Product Verification

0.4 1.8 0.8 2.0 Product Maintenance

2.2 2.7 2.2 3.2 Process Management

3.0 1.4 1.8 2.0 Process Coordination

1.6 0.9 1.6 2.6 Process Quality Control

1.9 2.2 1.8 3.2 Mean Scores 0

The summary table above indicates that DCDS scored extremely well on our
data collection criteria. Note that its overall mean score of 3.2 leads us to the
conclusion that DCDS is an "Adequate" software development environment. Note that
this assessment is based solely on the information collected and maintained by DCDS
according to our criteria discussed in the Appendix to this paper. But, this overall
mean is particularly impressive when compared to the "best case" mean 2.2 for the 5
CASE tools EPOS, Teamwork, Excelerator, DesignAid, and SA Tools. The best mean
score of any these five was able to achieve on its own was EPOS' 1.6 [VARN90aJ.

DCDS' success against our criteria reflects its flexibility. Its database with
extensible languages allows its users to store all types of data. For that reason it did
not score zero in any category, and scored very few l's. High marks in many
categories are attributable to its detailed attention to software development processes.

But, DCDS is not without its problems. Some deficiencies cannot be corrected
merely by adding to the database methodology languages. Such issues will be explored
more fully in the next phase of our work in which we will suggest modifications and
enhancements to DCDS.

-12- si

References

{VARN9Oa] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by Typical CASE Tools". Software Engineering Research
Center Technical Report TR-77-P. July, 1990. 4'

[VARN90b] Vamau, S. and H. Dunsmore. "Software Development Information
Supported by the SEI Contractor Assessment Questionnaire". Software
Engineering Research Center Technical Report TR-78-P. July, 1990.

[HUMP87] Humphrey, Watts S. and William L. Sweet. "A Method for Assessing
the Software Engineering Capability of Contractors". Software
Engineering Institute Technical Report CMU/SEI-87-TR-23. Fall, 1987.

The DCDS/Ada Methodologies group in the Systems Development
Division of TRW, especially John Conover, was extremely helpful to us
as we researched DCDS.

* 0

I I I I I

-1-Section I 16

APPENDIX - Data Collection Requirements for Software Specification,
Development, and Support

Below we re-present the data requirements identified in our previous report
[VARN90a]. These requirements are divided into two categories. Prod,,ct data
includes everything which describes the software product itself. The typical results of a
software project are the requirements, specifications, design, implementation, code
metrics, test plans, etc. These materials comprise product data. Process data includes
everything which reflects the activity involved in developing and supporting the
product. This includes personnel, schedule, budget, etc.

Product data is further subdivided into description, implementation,
verification, and maintenance categories. Description data consists of information
from the development phases commonly known as requirements, specifications, and
design. This category of items serves as a plan for the product in the initial stages of a
project and as documentation in later stages. Note that description data should be
flexible enough to include software analysis and design information, user documents,
test plans, and anything else needed. Implementation data consists of the deliverable
components of a product. This includes code and documentation for the end user.
Verification data consists of correctness information (typically testing information).
Maintenance data consists of information used in ensuring continuing usefulness of the 0
project after initial delivery.

Process data is subdivided into management, coordination, and quality
control categories. Management data is used to control the project in terms of time and
resources used. Coordination data is used to help personnel communicate, thus
increasing quality and productivity. Quality control data is used to ensure and generally
support development of a correct, robust, safe product.

Another term which appears in this report is component. This is a general term
referring to an element of unspecified type or a group of elements. A component
usually refers to a part of the deliverable product (e.g., a code module or a document).
A component may also be part of a specification, design, etc. which refers to code or
documents.

-14- Section I

PRODUCT
A

Product Description - Planning, development, documentation of all aspects of the
specific product. This is the major category that includes most of what we think of
when we think of what the software does.

Functionality - What the product must do. This information should reflect the
requirements and specifications for the software. It can be in a formal, semi-
formal, or just a natural language format. It should include data input, data
output, product behavior, and other properties such as portability and security.

Interfaces - Interaction with external systems. This information should detail
what external systems are related to this software and the specific types of
interactions between the software and the external systems.

Performance - Time and space that the product uses. This is information that
describes the required memory and disk space for the software, along with
standard (or typical) execution times. The information may be quite
complicated if the software can be run in various size configurations or if
execution times are varied dependent on input parameters.

Time Constraints - Real time limitations. This information outlines the time
performance constraints placed on the software. This includes any partial or
total constraints placed on execution times.

Fault Tolerances - Error and failure handling. This information outlines the
acceptable responses of the software to "erroneous" input or to hardware
failure. Such errors and failures can include exceptions, faults, and resource
limitations. The information in this category can include the types of error
messages that are to appear, the kinds of errors that need not be detected, and
the kinds of recoveries expected from certain errors.

Data Flow - Movement of data in and out of components or stores. This
information describes the way in which data moves throughout the software. It
treats each component or store as a data-handling entity and describes that data
that moves in and out of that entity (including what the data is, where it came
from, and where it is going).

Process Flow - Execution progression of components; sequential/parallel. This
information describes the software from a control flow viewpoint discussing the
flow of execution in both normal and abnormal situations. It also includes
sequential and parallel control flow information.

Resources - Resource usage of component; hardware considerations. Resources
are any entities external to the software. This information discusses resources
that either supply information to the software or receive information from the

NI
At.

Swtir-n III

P

- 15- -ri I

software.

Structure - Static decomposition of components. This information conveys any 0
logical grouping of components for any reason, for example, grouping all
components that deal with the same database. There may be several static
decompositions for the same software.

Entity-Relationships - Relationships among compo~ncnts and externals. This I
information includes all of the typical E-R type information, e.g., for each entity
to what other entities is it related and in what manner.

Communication - Internal interfaces. Within the software how is
communication accomplished? What messages (in the object-oriented sense) are
communicated among the software's entities?

Data - Often now being called the Data Dictionary, Data Encyclopedia, or
Data Repository. Data types, operations, constants, descriptions, stores,
relationships, objects and classes, processes, data flows, events, states, external
entities. May be related to Project Index data (see Process Coordination).

Requirements/Design - Relationships of goals and components. This
information tells which requirements are related to (satisfied by) which elements
of the design. *

Design/Performance - Relationships of structure and performance. This
information tells which elements of the design are related to the various
performance constraints.

DescrIlption/Implementation - Relationships of planned and implemented

components. This information links the requirements and specifications
(description of the software) with the actual implementation. That is, what
components implement the requirements and specifications.

Design/Design - Relationships of alternative design repre-sentations. For

software with more than one design proposed, how does each relate to the other?
What are the functionality and performance tradeofls of each?

Prototypes - What prototyping activity is planned? What specific aspects of the
software is to be prototyped? What will be done with the prototype? What
simulations will be conducted? What experiments will be tried to test
requirements, specifications, design, etc. This information, when complete,
should include the prototype goals (questions the prototype is designed to
answer) and result:; (experimentally-determined answers), as well as the actual
prototype produci. simulation codc, etc.

!! I I nn nllilnn inll il

- 1 - S•rtj'rtn I

Product Implementation - This is the major category that includes the actual software
product (i.e., code, documents, etc.) as well as relevant information.

Actual Product - Code, Documents for end user. This is the software and
documentation produced. It consists of all new (and possibly re-used) code and
the text and graphics necessary to produce documentation for the software. This
category is closely related to Configuration (see Process C'oordination) which
keeps track of versions, revisions, etc.

Metrics - Product statistics. This information consists of any and all metrics
computed primarily from the software code (but possibly also from
documentation or other related representations of the product). It may include
(but is not limited to) such metrics as lines-of-code, size of data structure, and
complexity (e.g., v(G)). Such metrics may be used for management, testing,
maintenance, performance, and even quality control purposes.

Library - Globally available, re-usable components. This information contains
either actual re-usable components (or some sort of pointer to them) that will be
(or have been) employed in the implementation of the software. Such a library
may have project, company, or even wider scope.

Templates - Outlines and examples of common components. This information
contains sample components that conform to project, company, or wider
standards. Such components may simply be bare-bones schema with little actual 0
code or may be nearly complete components that require only minor
modification before use in the software.

Compile Parameters - How code is compiled for t, ,ting, debugging, and
(ultimately) for generating a production version. This information includes
standard compilation parameters, ways of testing various versions, searching
order for external components (such as re-used components), and special
parameters necessary for preparing the product version.

rI

,J
- 17- Sectto 1

Product Verification - This is the major category that includes all ii.formation related
to testing the software (or any related activity that attempts to discover and correct
errors).

Test Plan - Outline of testing process. This contains at least rudimentary
information about how the software is to be tested: what types of testing
procedures (perhaps formal methods) will be pursued, what tools will be used,
what types of test data, what will be done about errors that are discovered, etc.

Test Tools - Custom functions for debugging and testing. This is information
about the specific tools that will be (were) used for testing the software. These
can include tools that are part of the CASE tool, standalone external tools, or
specific test harnesses to be produced as part of the software development
process.

Test Suites - Test data and expected results. This information describes
specifically how test data is to be generated. how ihe software is to be
"exercised" with this data, and how the results are to be interpreted.

Status - This information (collected during the soltware testing process) outlines
which tests have detected the presence of an error and which tests have failed to
detect the presence of an error. Obviously, it is possible to tell from this
information which tests have been run (and either detected or tailed to detect 0
errors) and which tests have not been run. l'or regression tests, this information
will tell which have been run on which versions and which revisions.

Errors Found - Errors discovered through testing, error reports. This
information outlines what errors have been discovered, which have been
corrected, which are planned to be corrected, and which (if any) are not planned
to be corrected.

Verification/Description - This information links the requirements and
specifications (description of the software) with the verification process. That is,
what has been (will be) done to assure that specific requirements and
specifications have been tested.

Analysis - Results of matching implementation against description (i.e.,
requirements and specifications). This information includes such items as types
of errors, time and space performance, error and failure handling, consistency,
and completeness.

-Section III-- V1

Product Maintenance - This is the major category that includes all information related
to the maintenance of the software, its upkeep, and support of the product in use (and
perhaps even in late development stages).

Maintenance History - This information includes all actual changes made and
known problems not yet corrected. It also includes information about various
software releases and versions and how they differ from each other.

Special Cases - How the product is being used. How the product is being

customized. This includes any release or version related information not
included in the Maintenance History sub-category above due to special
circumstances.

Complaints - Reported errors and their locations, problems; evaluations; replies.

This information includes all requests for changes to the software based on
actual errors (i.e., the software fails to meet one of its requirements).

Proposed Changes - Reported desires for new versions (including specific
modifications); evaluations; replies; planned upgrades. This information
includes all requests for changes to the software based on enhancements (i.e.,
the software meets its requirements, but it could do something even more useful
for the end user).

General Information - Any other information related to the software as it is in 0 0
operation; for example, (but not limited to) market penetration, customer
addresses and contacts, and versions and licenses.

5it't~ii Ill

-5-

-19-

PROCESS a

Process Management - Resource management for the software project. This is the
major category that includes most of the management information pertaining to the
software development process. A good CASE tool should support most of the
information maintained and manipulated by good stand-alone project management
tools.

Schedule - Time to finish each task. This information will include both
estimates of task durations and triggering mechanisms (for those not yet
completed) as well as actual start, stop, and duration times (for those tasks
already completed). It will include any relevant dependency and status
information, as well.

Budget - This information includes estimates of salaries, personnel costs,
hardware costs, etc. (for tasks not yet completed) as well as actual salaries,
personnel costs, and hardware costs (for those tasks already completed). It will
include any relevant dependency and status information, as well.

Personnel Assignments - This information includes responsibilities (who is
responsible for each aspect of the software development), backups (who are
available to step in for those with primary responsibilities), authorities (who has
read/write access to what project data), as well as individual data (experience,
skills, etc.) for each member of the software development team.

Environment Customization - This information describes the environment in
which this project is being developed (including how it may differ from the
standard software development environment in this company). What
procedures, tools, techniques, languages, management standards, coding
standards, and documentation standards are being used. How text and graphics
are formatted for various media. This information outlines how the software is
to (does) interact with the end users. Information such as standard screen
formats, standard error formats, standard input "forms" are all included in this
information.

Format Parameters - Parameters for input to and output from the CASE
system, including reports throughout the software life cycle that keep
management informed of the progress on this software project. What reports are
to be generated, what schedule is to be followed for them, are they to be
manually or automatically generated, how should they look for various media.

Process Plan - What plan is to be (was) followed in developing the software.
What phases are to be employed, what standards, and overall schedule. This can
even include pre-project bidding and contracting information and some
allowance for process improvement.

-20- ecticn I

Process Coordination - This major category includes all information needed by the
software development team for cooperation, communication, and organization.

Project Directory - Project, company, or environment scope directories. This
information includes all linkages to people, requirements, specifications, design,
code, and testing relevant to this software project. For example, in the people
category it can include all personnel working on the project, personnel with
previous experience on this or a similar project, personnel with consulting
capabilities outside the project, etc.

Configuration - Arrangement of all product and some process data. This
includes such information as (but is not limited to) software versions, revisions
(history of the software), structural relationships, and control locks (overwrite
protection).

Standards - Project consistency rules. This information includes all standards
that are to be (were) followed during software development. Note that several
other categories include some standards. In this category they are to be all
collected including documentation (perhaps the most important), personnel,
design, coding, messaging, and implementation standards.

Communication - Intra-group communication. This information includes
names, addresses, phone numbers, e-mail addresses, and office locations of all
personnel working on the project. It can also include (but is not limited to) mail 0
aliases (mailing lists), note logs, meeting minutes, note/component relationships
(i.e., topical index for notes, references).

Conununication Formats - Idea communication media. This includes
information on the various modes of communication among software
development team members: for example, (both in-person as well as electronic
versions of the following) forums, bulletin boards, brainstorming sessions, votes,
etc.

tI

-21 - Sect-ion

Process Quality Control - This major category includes all information pertaining to
quality assurance including product quality, process quality, run-time environments, and
history.

Quality Goals - Criteria to measure quality. This includes information from
requirements, specifications, and otherwise that can be used to assess the quality
of the completed software project.

Fault Consequences - What happens if the product fails. This information
describes the severity of the problems involved if the entire product or any
components thereof fail to operate according to expectations.

Target Environment - How will the product be used. The software must
operate within certain hardware and software constraints. This includes such
information as the type of operating system, LAN operation, possible abuses,
etc.

Inspections - Standards, schedules, participants, results. This includes
information about what inspections are planned (or for a completed project,
what inspections were conducted). It also includes information on classes,
design meetings, problem resolution meetings, and informal meetings.

User Input - Customer/End-user evaluations and comments. What user input is •
going to be (was) collected. How is it to be used. What effect will it have on
the developing and completed software product. What input will it obtain from
experts in the field.

References - Miscellaneous, external rcefrences. This can include (but is not
limited to) references to similar projects, projects in the same application area,
projects conducted for similar hardware systems, projects developed by the same
or similar software development teams, etc.

Project History - Record of changes and results of the process. This
information includes all aspects of project history that is not found in
Configuration (see Process Coordination). It may include (but is not limited to)
project summaries, post-mortem analyses, process evaluations, and process
improvement suggestions.

Section HI

AOL

SPIction 11

Softwar,, Development Information Completeness
in the Distributed Computing Design System (DCDS)

S. Varnau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 470077

SERC-TR-86-P
January, 1991

Technical Report 3.4 from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract

In this paper we explore the implications ol our previous cv,.'liation of the
Distributed Compotting Design System (DCDS) according to otr data ct,'Iection
requirements. That evaluation gave insight to basic support tunctionality as well as
data collected.

A strength of DCDS is in the extensible data modlel implemented in entity-
relationship databases. A weakness lies in the separation ,ef the databases.
Configuration management support is also weak. DCDS supports a partially open
architecture and could be enhanced to include a fully open architecture and necessary
database support. Additional work could be generalization of g,'-phics and
improvement of the entire user interface. More extensive help text, examples, and
better manuals would be valuable. Enhancements of lcsser importance are
generalization of the simulation tool and extension of methodology languages.

Our data collection cvaluatiin has shown that DCDS is well designed to serve
as the basis for a programming support environment, especially if some enhancements
can be made to it. Functionality and usability issues will be discussed further in the
next step of our work.

Scrt i1n III I
-9-

Sctjion IT

Background

In our previous work, we identified data collection requirements for CASE
systems [VARN90a]. The focus of that research was to describe an environment useful
and flexible enough to become a standard software project support environment. Such
an environment must have the flexibility to grow, evolve, and specialize. Basic to this
viewpoint are portability, open architecture, and data collection. Of these, data
collection seems to be the least explored and potentially the most important. Many
tools may be added to an environment, enhancing functionality, but they all operate on
the same project data. Our data collection requirements categorize and define what data
a standard CASE environment needs to collect. An effective data model should be
fairly comprehensive over the data requirements, and have sufficient flexibility to
evolve along with the environment and projects that are developed using that
environment.

In the process of defining and refining the CASE data requirements, we
evaluated two important papers in the CASE field and several cmmon CASE tools [see
VARN90a, VARN90b]. We then evaluated the Distributed Computing Design System
(DCDS) according to those requirements IVARN90c]. Now, we use this information to
determine the completeness of DCDS from the data collection viewpoint. Furthermore.
we propose enhancements and modifications that will make DCDS more useful as a p

standard development environment.

General Discussion of DCDS

DCDS consists of tools that interact with entity-relationship-attribute (ERA)
type databases. Each database is built using a language nucleus, which defines the
types of allowable entities, attributes, relationships, and qualifiers. DCDS has five
Jifferent languages which the user may extend, or he may create new languages. Each
one of the languages corresponds to a detailed methodology, which is part of an overall
development process. A template processor provides the user a means to define reports
and new (or modified) methodology screens.

DCDS has succeeded in separating the software development methodology from
the environment itself. The core of the environment consists of tools to create, modify,
and query project databases. DI-,elopmcnt methodologies are implemented by database
languagcS., templates, and query tilcs. This design allows great flexibility of
methodologies that may be used and of data that may be collected. Our data collection
evaluation took this flexibility into consideration as well as the standard DCDS

sortion HIT

-3-A

- 3 -S, c t io n Il

methodologies.
p

A robust data model must incorporate data in specific, machine-readable
formats. Tools adhering to these formats may be integrated with the environment. The
environment is then responsible for certain basic functions controlling the database.
While the flexibility of the DCDS database allows data of any kind to be collected,
some essential, basic functions are missing from the environment. These problems
were revealed during our data collection evaluation, but are not primarily data
collection problems. This type of problem helps to identify the major enhancements
needed in DCDS. Other deficiencies may be remedied simply by extending the
languages and methodologies provided. This can be accomplished even at the user
level.

Evaluation and Enhancements

The details of our data collection evaluation are contained in IVARN90c].

DCDS scored very well in most Product categories, especially Product
Description and Product "'crification. The standard DCDS methodologies are fairly
comprehensive from the s)stem requirements phase all the way through the testing
phase. We do question whether these methodologies could be extended to cover
maintenance issues more fully. Also, DCDS concentrates on real-time, embedded
systems, so facilities for description, prototyping, and implementation of human
interfaces are underdeveloped.

DCDS scored somewhat worse in many Process categories. In the Process
Management area capabilities for handling information related to personnel, budget, and
schedules need to be enhanced. In Process Coordination provisions need to be made
for notes, meetings, and other communication information. Another problem in this
category is lack of support for configuration issues, including version/revision control
and multi-user support. The Process Quality Control category could be improved by
adding process reviews and evaluations to the database. Project history data could also
be represented better.

Most of the deficiencirs found in our data collection evaluation are offset by the
flexibility of the DCDS design. The standard languages and methodologies can be
extended by the DCDS designers, other vendors, or even users without touching the
core of the environment. Some problems appear not to be so simple; they will likely

:! 1 I

-4- ,n

require enhancements to the core environment. These include multi-user support,
cross-database traceability, security, and version/revision control. ,

4'

These database support issues are of primary concern; no add-on tools can make
up for deficiencies here. Configuration management functions (security,
version/revision control) should not be too difficult to incorporate into the DCDS
environment. The technology is available. Management of multiple databases and
multi-user support, however, may pose some difficult problems. Unless the divisions
between databases can be made virtually transparent, traceability and maintainability
will be difficult. It is possible that the database organization should be redesigned.

DCDS is designed well for flexibility and customization, but that power is not
amply reflected in its documentation. A system programmer should have full access to
methodology templates and query check files. Also, this flexibility must be extended to
freely incorporate new tools in addition to DCDS tools.

The user interface is fair, with much potential for improvement. A graphical
interface to the entity-relationship databases would be a big improvement, and we
understand that such is already under development. Currently graphic capabilities only
show decomposition attributes (e.g., F_NETs and R_NETs) of particular entities. 0
Intuitively, this seems to be insufficient. Components of these "NETs" should be
stored in the databases as ordinary entities. A generic graphics editor should be used
for all ERA items, in keeping with the goals of flexibility and extensibility required of a
standard format. Perhaps graphical templates could be used, much as textual templates
are now.

The simulation functions of DCDS are good, but are restricted to modelling
based on specific data constructs in two of the standard methodology languages (SSL
and RSI.). In the future, the DCDS simulation tool could be generalized in the same
way as suggested for "NET" items above. Simulation templates would allow this
feature to grow with the rest of the environment. Certainly, simulation is a nice
function, but the database problems and even interface enhancements should take
precedence.

Some valuable future enhancements could also be added to the data languages.
More project management and process management need to be added. Also, a design
language should be developed that makes use of an object-oriented perspective. Over
time. design languages for several different domains could be developed.

Summary Ft,
U

Our data collection evaluation has shown that DCDS is well designed to serve
as the basis for a programming support environment, especially if some enhancements
can be made to it. We believe that many of these enhancements are already under
development. Functionality and usability issues will be discussed further in the next
step of our work.

A strength of DCDS is in the extensible data model implemented in entity-
relationship databases. A weakness lies in the separation of the databases.
Configuration management support is also weak. DCDS meets many of our data
requirements and supports a partially open architecture. DCDS could be enhanced to
include a fully open architecture and necessary database support to provide an excellent
foundation software engineering environment.

Once these "necessary" improvements are made, additional work could be
generalization of graphics and improvement of the entire user interface. More extensive
help text, examples, and better manuals would be valuable.

Finally, enhancements of lcsser importance are generalization of the simulation
tool and extension of methoaology languages.

Section HI

References 0
IVARN9Oa] Vamau, S. and H. Dunsmore. "Software Development Information

Supported by Typical CASE Tools". Software Engineering Research
Center Technical Report TR-77-P. July, 1Q90. r

IVARN90b] Vamau, S. and H. Dunsmore. "Software Development Information
Supported by the SEI Contractor Assessment Questionnaire". Software
Engineering Research Center Technical Report TR-78-P. July, 1990.

[VARN90c] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-85-P. January, 1991.

The DCDS/Ada Methodologies group in the Systems Development
Division of TRW, especially John Conover, was extremely helpful to us
as we researched DCDS.

iI

Section III

An Evaluation of DCDS

S. Vamau
H. Dunsmore r

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC-TR-87-P
January, 1991

Technical Report 3.5a from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract
* 0

This report evaluates DCDS (Distributed Computing Design System) from a
usability perspective rather than our standard data collection viewpoint. The evaluation
tool used was developed in an earlier SERC project.

DCDS has several major strengths: including a flexible methodology, full life
cycle coverage, a very detailed methodology, and a relationship-oriented database.
DCDS also has some major weaknesses: including a lack of multiple user support, a
lack of database security, a lack of project management support, and a mediocre user
interface.

The evaluation tool that was used to generates this report has been used on other
CASE tools in the past. A comparison of DCDS and those other tools will be presented
in a companion report TR 3.5b.

,trie ion III

Section III
-2- V

Background

In previous work, we evaluated DCDS and five other CASE products on the
basis of the data they collected [VARN90a, VARN90b]. We now evaluate DCDS on 4
functional, performance, and usability criteria as presented in [ZAGE87]. The
evaluation questions are based on the principles of "portability, generality, tailorability,
extensibility, uniformity, controlability, efficiency, reusability, and traceability". These
are certainly desirable goals, but are not directly reflected in our data collection
requirements [VARN90a]. The two evaluation techniques are not mutually exclusive.
It is our intention that the information requirements analysis combined with this
pragmatic questionnaire assessment will present a complete picture of DCDS.

This usability questionnaire has already been applied to the five other CASE
products discussed in [VARN90a]. A comparison of DCDS and those other tools will
be presented in a companion report TR 3.5b.

i. SYSTEM OVERVIEW

I. System ident~fication and miivcellanea -- *
a. What is the name of the system?

Distributed Computing Design System

b. What is its acronym (if any)?

DCDS

c. What version is this?

DCDS/Ada (SUN) Release 4.3

d. What company sells or what university developed this system?

TRW

c. What is the company's (university's) address?

TR W/Huntsville
213 Wynn Drive
Huntsville AL 35805

Ip

Section III
-3-

f. How long has this system been on the market or how long has it been in
development?

DCDS has evolved from work started in 1968. DCDSIAda development
was started in 1984.

g. How many copies have been sold?

This is unclear, but we believe it is less than 100.

h. What enhancements are planned for the future?

TRW plans to port the system to X-windows interface, add a graphic
interface for general entities and relationships, and enhance the entire
user interface. Dataflows will be added to FNET graphics. Also, the
document generation facility will be extended.

2. Area of product concentration --
a. What is the system's concentration area (if any) (embedded systems,

real-time control, system software, business software,
engineering/scientific, personal computer, artificial intelligence, ...)? *
Real-time, distributed systems.

3. Hardware requirements --

a. On what machines (micros, workstations, mainframes) does this system
run? What operating system is required in each case?

VAX 7800 or above, VMS 5.2 or later
SUN 3 family, SUN O/S 4.0 or later

b. What are the memory requirements?

VAX: 8192K, at least 32K paging file quota
SUN: 8MB, 30MB swap space

c. What are the disk (i.e., online permanent storage) requirements?

VAX: 80K Blocks
SUN: 25MB

d. What are the graphics/screen requirements?

1t

Sect ion HII
-17-

-4-Section I

VAX: (optional) Tektronix 4105 Terminal or TGRAF Emulator 0
SUN: Normal SUN 3 Hardware, runs under Suntools a

I

e. What additional hardware/software is needed for communication with
other systems?

Optional (for Simulation):

VAX: VAX/Ada Compiler
SUN: ALSYS Ada Compiler

f. Can it run in a degraded form? (For example, some features might need
graphics capability. But, can users without graphics devices at least
access some of these features in a usable form?)

The graphics are not needed on the VAX version.

g. How easy is it to install this system?

Easy. The executable system is delivered on one magnetic tape.

4. Vendor support -- * *
a. What training (e.g., workshops) does the vendor offer?

There is a one week course, including lab sessions.

b. What off-line documentation (usually manuals) does the vendor offer?

User's Guide
Methodology Guide
Methodology Guide Appendices
Technical Overview

c. What on-line documentation (usually help facilities) does the vendor
offer?

Context sensitive tool (general) Help and Methodology Help buttons can
be selected by mouse. Methodology help templates may be enhanced by
users. But, the quality of these is inconsistent.

d. Does the vendor have a toll-free number for assistance?

No. User support and training must be provided by developers.

-18ction III

-5-

e. What is the vendor's market position (i.e., top 10%, lower 25%, ...)?

This question is not applicable because the product is government-
owned The product is not used widely, but few products compete in the
defense, real-time, distributed software arena.

f. Has the vendor made a commitment to support and enhance the system?

Since development is dependent on military financial support, the com-
mitment is not assured, but seems to be steady at the present time.

5. Cost --
a. What is the system's initial purchase price?

The product is free since it is government owned

b. What discounts are available?

N/A

c. Is the price per site or per machine?

N/A

d. What will be cost of training provided by the vendor?

Training is arranged by the Strategic Defense Command (SDC) in
Huntsville, AL. To the best of our knowledge it appears that the train-
ing is free.

e. What will be cost of training done locally (i.e., in-house)?

N/A

f. What is the cost of upgraded system versions (if any become available)?

N/A

g. What are the potential local maintenance costs (if any)?

Extensive local customization is possible, but none is required Costs
will depend on what customization is done.

-6-

6. Performance --

(based on literature) I

a. Does the literature suggest that the development time of a project is
decreased through the use of the system?

Only that it makes it possible to complete large projects on schedule.

1. How much?

N/A

2. In what part of the development cycle does it promise to help?

Completeness and consistency in requirements, design, and testing.

b. What have you found out about the shortcomings of this system?

Mainly, lack of multi-user support and lack of version/revision manage-
ment features. We consider these features necessary for large systems
software development that DCDS intends to support. Also, the user
interface is sometimes cumbersome to use, including some actual errors.
(In one graphics tool, the user can be faced with a situation in which it
is impossible to continue, short of killing the DCDS process.)

11. SYSTEM APPEARANCE
7. Presentation ---

a. Does the system use

1. graphics?

Yes

2. color?

Yes

3. animation?

No

4. windows?

Yes

b~tl I I I/lllllllli llll IIIi

&ctimn III
-7-

5. menus? X,

Yes

b. How is text entered ?

By keyboard, cut and paste, selection menu, command file, and external
file references.

c. Are there input alternatives to the keyboard (e.g., mouse light pen,
scanner, spoken, ...)?

Mouse

d. Does the system support both expert and novice modes?

Yes. In the sense that many commands may be entered on a command
line, or by mouse and menus.

e. Is the interface customizable? (For example, does it provide facilities
such as menu generators to assist in tailoring and extending the user
interface?)

The tool menus are not customizable, but all methodology screens,
reports, and check files are completely customizable.

& Ease of use ---

a. Has the system been "human factor" engineered to make it easy to use?

DCDS is not especially good in this regard Several things are annoy-
ing, such as the confirmation "DONE" button that requires switching
between keyboard and mouse when the "Return" key would be suffi-
cient. Many actions invoke new windows which must be confirmed or
canceled This is appropriate in some places, but not in all Methodol-
ogy templates should be directly edite4 rather than requiring many
actions to enter text. 0

b. Does it have an intuitive command interface?

Yes, the commands, nake sense, and can be entered using buttons, pop-
up menus, and parameter entry windows.

c. Are tasks which are done throughout the lifecycle invoked in the same
manner throughout?

hI

-8- Sertirn III
-8-

Yes.

d. Have you found any references concerning the ease of use of the sys-
tem?

No recent ones. Several studies have looked at older VAX versions.

III. TOOL SET

9. Tool set provided --

a. Does the system enforce a single software development methodology or
support several optional methodologies?

DCDS supports its own detailed methodology (divided into SYSREM,
SREM, DDM, MDM, and TSM), which i4 basically the waterfall model
with elements of spiral and prototyping models added The user can
define a new methodology or modify the standard one.

b. Are the tools integrated in the sense that information entered to any one
is effectively available to the others?

Each of the five sub-methodologies has its own database language. The
databases are not compatible, but all of the primary tools (except simu-
lation) are compatible with each type of database.

c. Are the tools integrated in the sense that movement between them is
easily done?

Moving from one tool to another is not especially easy; a return to the

main option window is required each time. Also, a user cannot have
two tool windows in view at the same time.

d. Does the environment appear unified (i.e., do the tools seem to work

together)?

Yes, although there is not much interaction between tools.

c. Can you select one tool independent of the others?

The user interacts with only one tool at a time, but they are all part of
the DCDS environment.

f. Can the tools be adapted (i.e., customized) by the user?

While the the life cycle methodology is completely customizable, the

-22- SErrtion III

AM

&qCtjff1 III

-9-

tools themselves are not. The only things that can be changed are
graphics colors, command and message logging, and output destina-
tions.

g. Do the tocls for program development include

1. screen generators?

No.

2. report generators?

No.

3. system generators?

Not really, but an executable model may be constructed during the
design phase. The system has a simulation generator for use in
simulation experiments.

4. fourth generation languages?

No. 0

5. code generators?

No.

h. Does it produce project documentation automatically?

Yes, using the query tool combined with report templates. Graphics are
output separately in postscript format.

IV. LIFE CYCLE VIEW

10. Life cycle support --

a. Does the system support the entire development of the project?

Yes, although it is somewhat lacking in maintenance suppoi .

b. Can comments (text) be entered throughout development?

Yes, all database items can be commented.

c. Does the literature for this system combine the requirements phase and
the specifications phase as one? If yes, just answer part d and skip part

t! i III I/llll~ llllllllll

- 1 - Section III

Yes, although requirements can be designated as "originating require-
ments" or as "derived requirements"

d. Can the system be used during the requirements phase of a project?

Yes, DCDS includes a system requirements methodology (SYSREM) as
well as a software requirements methodology (SREM). Below, we will
discuss only the software requirements phase, although the system
requirements phase is similar.

1. What methods are used for requirements analysis?

Graphics (RNETs and LNETs), dataflow analysis of functional
requirements.

2. Does it illustrate project interrelationships?

Yes, with its entity relationship database structure. This is a
strength of DCDS.

3. Does it perform consistency and completeness checks on the •
requirements?

Yes, four consistency check files are available, and the user can
add his own.

4. Does it produce requirements documents on demand?

Rieport templates are available that specify the format of database
query results in govLernment or non-government formats. Also, the
user may provide his own.

5. Is it capable of interfacing with other tools used in development?

At the end of the requirements phase, export files may be created to
establish requirement elements in other databases.

a. Which tools?

Common data element types may be ported to design, imple-
men tation, and test phase databases.

-Sa-t Lon If T

e. Can the system be used during the specifications phase of a project? a,
I

Yes, see above section.

1. What methods are used for specifications analysis?

N/A

2. Does it perform consistency and completeness checks on the
specifications?

N/A

3. Does it produce specifications documents on demand?

N/A

4. Is it capable of interfacing with other tools used in development?

N/A

a. Which tools? 0

N/A

f. Will it allow for the rapid development of prototypes of the system?

Yes, but only simulations for timing analysis and executable models of
design, not user interfaces.

1. Does it quickly put up screens for user review?

No.

2. Does it produce mock-up reports?

No.

3. Does it have the ability to quickly change the prototype at the

user's request?

No.

Ir

-12- Section II

4. Does the system produce an initial version of the system from the 0
system requirements? 3,

No.
4r

g. Can the system be used during the design phase of a project?

Yes, the standard methodology is DDM (Distributed Design Methodol-
ogy). MDM (Module Development Methodology) also includes design,
but it is discussed in the next section.

1. What are the design tools provided?

a. graphical design

Logic diagrams (L_NETs)

b. tabular design

None
* 0

c. programming design language

DDL (Distributed Design Language)
Ada Program Design Language (LNETs)

d. Are these integrated?

Somewhat. Graphic structures are represented by special
methodology language constructs and referred to by other
data items. But, their composition is not really represented in
DDL or any of the other database languages.

2. What methodologies are supported?
a. data flow oriented

Performs data flow consistency analysis. Also checks that all
data is produced and used.

b. data structure oriented

None

ecticn IV

Se~ct O, III

c. object oriented 6
None. Although it could be argued that the entity relationship o
database promotes this kind of approach.

3. Does it perform consistency and completeness checks on the
design?

Yes, five different check files are available, and the user can add
his own.

4. Does it produce design documents on demand?

Report templates are available that specify the format of database
query results in government or non-government formats. Also, the
user may provide his own.

5. Is it easy to modify the design?

Not really, most of the design information is textual.

6. Is it capable of interfacing with other tools used in development? *
Data elements may be incorporated from the requirements data-
base, and at the end of the design phase, export files may be
created to establish design elements in other databases.

a. Which tools?

Common data element types may be ported to implementation
and test phase databases.

h. Can the system be used during the coding phase of a project?

Yes, the standard methodology is MDM (Module Development Metho-
dology). MDM is for low-level design and implementation.

1. How does the system help during coding (e.g., syntax-directed edi-
tors,...)?

Only by keeping track of all requirements, design, coded modules,
and other development information. DCDS also provides con-
sistency check files for this phase. LNETs can be used for actual
coding as well as design language.

S I

iI &•t•m IV

Sect~ion 1T[
-14- St

2. Does the system support automatic code generation?

No.

a. What items are needed (e.g., specifications, design, ...)?

N/A

b. In what languages can code be generated?

N/A

c. Is the generated code portable?

N/A

d. Is the generated code reusable?

N/A

e. What percentage of code can actually be generated (vs. that
supplied by the user)? •

N/A

Can the system be used during the testing phase of a project?

Yes, the standard methodology is TSM (Test Support Methodology).

1. Does the system have run-time performance tuning tools available?

No, only simulation.

2. What testing tools are provided? (i.e. test data generators, static
analyzers, ...)

The Process Construction Manager (PCM) is used to build the
required configurations for tests. LNETs may be used to con-
struct test drivers.

3. Does the system have any kind of formal verification sub-system?

No.

-4 -Section TV

I

Scrt-ian IT1- 15-

j. Can the system be used during the maintenance phase of a project?
I

Yes, all development information, including cmde and tests, are stored in
the databases. DCDS does no4 however, have a special methodology 4
for maintenance.

1. Does the system provide the means to maintain multiple versions?

No.

2. Does the system reduce the effort for change and enhancement?

Yes.

a. How does it reduce the effort?

Access to requirements, design, implementation, and test
information makes it easier to trace changes through the life
cycle.

3. Does it provide documentation updates? *
No.

11. Communication vehicle(s) ---
a. What is the communication vehicle (i.e., language) used for each stage

of the development(e.g. graphics, text, VHLL)?

1. Requirements

SSL (System Specification Language), RSL (Requirements State-
ment Language)

Graphics (F_NETs, I_NETs, RNETs, LNETs)

2. Specification

RSL, DDL (Distributed Design Language)

Graphics (RNETs, LNETs)

3. Prototyping

None

II

Secticr IHI

-16-

4. Design
a,

DDL, MDL (Module Development Language)
Ada Program Design Language

Graphics (RNETs, LNETs)

5. Analysis

DCDS query language and database language (SSL, RSL, DDL,
MDL, 7SL)

6. Coding

Ada, or any other programming language

7. Testing

7SL (Test Support Language)

Graphics (LNETs)

8. Maintenance 0

Same as above languages

V. DATABASE SUPPORT

12. Project database ("repository of project information")

a. Does it have a central information repository?

No, it has five central repositories! There is one for each methodology.

b. What information is kept about each of the following in the project data-
base'?

1. requirements

All five languages support "ORIGINATING-REQUIREMENT",
"PERFORMANCEREQUIREMENT",
"SYSTEM-REQUIREMENT', and
"UNSTRUCTURED-REQUIREMENT" element types.

2. specifications

All five languages support the "DERIVEDREQUIREMENT"

At

-6-ectionIV

sect itn III
-17-

element type.

3. design

A great deal of the database element types are involved in the sys-
tem design.

4. assumptions

Two of the five languages support "ASSUMPTION" as an attri-
bute of "DECISION" elements.

5. decisions

All five languages support a "DECISION" element type.

6. modules

MDL supports "ROUTINE" and -MODULE" element types.

7. data structure

SSL and RSL support a "DATA" element type.

DDL and MDL support "ACCESSTYPE", "ARRAY._.TYPE"
"FILETYPE", "ORDINAL_TYPE", "REALTYPE",
"RECORDTYPE", "SET-TYPE", "SUBRANGETYPE",
"USER-TYPE", and "VARIABLE" element types.

8. data definitions

The attributes of the various data element types give descriptions,
types, ranges, initial values, locality, units, and relationships to
other elements.

9. code

In MDL, the element types "ROUTINE" and
"MODULEVERSION" refer to the actual code.

10. test plans

In 7SL, a great many element types refer to different aspects of the
test plan.

.ix't inn IV
-7-I

-18 - Section ITT

11. other

The database languages are very detailed All data is kept within
the databases directly or as an external file reference.

c. How do you retrieve the information? "

Query and Text Browser are the primary retrieval tools.

d. Can you easily integrate an existing database with another project?

The query tool can be used to export data in a command format for
input to DCDS, or in a text format as specified by templates. A data-
base can also be loaded as a whole.

e. Does the system provide for completeness and consistency checking via
the project database?

Yes, the standard methodologies provide many check files. The user
may also change these or implement his own.

13. Cross referencing -
a. Does the system support traceability (i.e., can a requirement be traced to *

specifications to design to code)?

Yes. But, this is a somewhat manual process - since each phase
requires a different database and only one database may be loaded at
one time.

b. Does the system support cross-module indexing (i.e., can the system
warn if a change in one module might necessitate a change in another)?

Yes, such relationships are captured in the database, but DCDS does
not provide such a function.

14. Library support--

a. Does the system support reusability of

I. specifications?

Only through the normal export and import of database informa-
tion.

2. designs?

'"'•t ion V

At

-19-

Only through the normal export and import of database informa- 6
tion.

3. code?

MDM contains steps to specify reusable modules.

4. test plans?

Only through the normal export and import of database informa-
tion.

b. What filing and retrieval techniques arc used to support reusability?

MDL element type "MODULE" refers to reusable components. These
may be searched using the Query Tool or the Text Browser.

c. What OTSS (off the shelf software) (e.g., IMSL routines) is available
with this system?

None

VI. REAL WORLD USABILITY
15. Large project support --

a. Does the system support large projects?

DCDS documentation suggests that it is useful for large, complex pro-
jects. The system is, however, essentially a one user product.

1. Does it support multiple users?

No. BEGIN

2. Does it support concurrency control?

No

3. Does it support version control?

No

4. Does it support configuration management?

No

III Illllllllllllll~l

-20- Sortiom III

5. Does it provide multiple project support? 0
Yes, different databases may be create4 loade4 backed up, and
restored at will. Only one database, however, may be loaded at a
time.

b. Does the system have a method for data sharing? (e.g. central database,
distributed database...)

The databases can be loaded as a whole, or particular data can be
exported and imported to another database.

c. What size limitations restrict large project support (e.g., maximum
number of some component, maximum number of users, ...)

No known limitations.

16. Project management ---

a. Does the system provide for project management support?

Very little management support is provided. Some schedule information
can be maintained in the database. *

1. Is project management supported during the entire development
process?

Yes

2. Does it produce measures of scope of effort required?

No

3. Does it provide measurements of progress?

No

4. Does it produce graphical and tabular reports on the progress?

No

5. Does it estimate the quality of the product produced?

No

lI

-3 - ,N twii V \

-21 -S~ticu
II

6. Does it allow for project tracking? 0
No

4r

7. Does it produce reports on demand?

Yes, report templates and the query tool may be used produce
reports.

8. Does it compute any code metrics (e.g., control structure metrics,
data structure metrics, intermodule metrics,...)

No

17. Security --

a. Which of the following security features does the system have (access
control, access logging, information encryption, others)?

DCDS has security only to control extension to database languages. No
security measures exist to control database access and modification
other than UNIX file security.

VII. SYSTEM HELP

18. Error checking --- (e.g., from improper item deletion or alteration)

a. Does the system provide context-sensitive checking?

Yes, consistency check files are provided for many methodology phases.
The user can even supply his own. The check files are actually query
command files that search for error conditions in the database.

b. What error recovery procedures (e.g., from improper item deletion or
alteration) are available?

Only entire database backup is provided This is a manual activity.

19. Expert assistance --
a. Does the system provide any form of expert assistance (e.g., active

expert system-like support concerning ramifications of changes
modeled after "expert" human assistants)?

No

b. Does the system highlight or (in some similar manner) present valid
options?

-22- Setion III

Where possible, the user has the option to choose from a selection menu 6
as well as type in parameters (usually element types and instances).

VHI. RELATIONSHIP WITH OUTSIDE WORLD

20. Integration with other systems ---

a. Can this system be integrated with other systems (e.g., compilers, edi-
tors, spreadsheets,...)?

No real integration capability.

b. Does the system have an open architecture (i.e., project database is read-
able and usable outside the system)?

The database information can be extracted in an ASCII format. The
query tool and report templates may be used to obtain desired formats.
It is not clear from the documentation how other tools could operate on
the database.

c. Can existing software not written with this system be integrated?

It is not clear from the documentation how other tools could be called
from the DCDS environment or added to tool menus.

SIlUIlllllll/lllllll

Setion Il
-23-

Summuary

DCDS Strengths 4

(1) Low cost of acquisition and training.
(2) Good support for real-time and distributed software.
(3) Full life cycle methodologies.
(4) Flexibility of methodologies.
(5) Flexible database, supporting relationship data.

DCDS methodologies are designed with complex, distributed systems in mind,
but are implemented in a manner flexible enough to evolve. A system programmer or
vendors could implement other methodologies easily. This philosophy, however, was
abandoned for simulation and graphics tools, which are methodology dependent.

The entity-relationship database format is useful to describe relationship data,
often the toughest type to capture. Good query capability allows several tools to be
implemented through queries (e.g., automatic documentation and consistency checks).

DCDS Weaknesses

(1) Mediocre user interface.
(2) Poor traceability across databases.
(3) Lack of concurrent user support.
(4) Lack of version and revision control.
(5) Lack of security.
(6) Lack of project management support.

The major problem for large system builders is the lack of multiple user sup-
port, which includes concurrency and security. Even small projects would benefit from
configuration management support. DCDS will never be widely used until user inter-
face and traceability problems are corrected.

II

I IIIIII IIII II II

Sectim III- 24 -

References

The DCDS/Ada Methodologies group in the Systems Development Division of TRW,
especially John Conover, was extremely helpful in our research of DCDS.

[VARN90a] Varnau, S. and H. Dunsmore. "Software Development Information Sup-
ported by Typical CASE Tools". Software Engineering Research Center
Technical Report TR-77-P. July, 1990.

[VARN90b] Varnau, S. and H1. Dunsmore. "Software Development Information Sup-
ported by the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-85-P. January, 1991.

[ZAGE871 Zage, W. M., H. E. Dunsmore. D. M. Zage, and G. Cabral. "A Tool for
Evaluating Software Engineering Environments". Software Engineering
Research Center Technical Report SERC-TR-2-P. June, 1987.

I I

p
Section A,

A Usability Comparison of DCDS a
with Five Popular CASE Tools p

S. Varnau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC-TR-88-P
January, 1991

Technical Report 3.5b from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract

Evaluation criteria specified by an evaluation tool developed in 1987 represent
the basis for a comparison between DCDS and five other tools. This comparison draws
on the other reports that present the evaluation results for each tool.

DCDS fares very well in some respects, but is inferior in several practical
aspects. This comparison provides a different perspective and a different result than our
previous data requirements comparison.

Section IV-2-

Background

In previous work, we evaluated DCDS and five other CASE products on the ,
basis of the data they collected [VARN90a, VARN90cI. We then evaluated those same
tools on functional, performance, and usability criteria as set forth in [ZAGE87]. The
evaluation questions are based on the principles of "portability, generality, tailorability,
extensibility, uniformity, controlability, efliciency, reusability, and traceability"
(ZAGE871. These are certainly desirable goals, but are not directly reflected in our data
collection requirements [VARN90a].

We now compare those latest results, focusing mainly on DCDS. Each major
section of the [ZAGE87J evaluation tool is listed below, with the important differences
between DCDS and the other tools.

The first goal is to further evaluate DCDS against established CASE systems.
The second goal is to compare the different tool methods to identify successful
techniques. This information will be useful for our final recommendations presented in
the next step of our work.

I C
As in [VARN9OaJ, the tools used as a comparison basis are:

DesignAid version 3.55, one of the CASE 2000 tools for Computer Aided Software
Engineering available from Nastec Corporation, 24681 Northwestern Highway,
Southfield, Michigan 48075.

EPOS version 3.3.0 - Engineering and Project-management Oriented Support system,
available from Software Products & Services (SPS), 14 East 38th Street, New York,
New York 10016.

Excelerator/RTS version 1.8A, available from Index Technology Corp., One Main
Street, Cambridge, Mass 02142.

SA Tools version 1.00, available from Mentor Graphics, 8500 Southwest Creekside
Place, Beaverton, Oregon 97005.

Teamwork version 3.0, available from Cadre Technologies, 222 Richmond Street,
Providence, Rhode Island 02903.

The five tools listed above were evaluated previously and those prior results are
referred to throughout this report. The details can be found in IZAGE88, STRA88,
CABR88, ZAGE88b, CABR88bJ respectively. In [VARN9Oe] we added to this list:

° • l . i i • w• S

- -S e~tion IV I

DCDS/Ada (SUN) release 4.3, available from TRW Huntsville Operations, 213 Wynn I
Drive, Huntsville, Alabama 35805.

System Overview

This section of the evaluations point out several major characteristics of DCDS
that differentiate it from the other products. DCDS has a very low number of
distributed copies compared to the others. Only Teamwork and Excelerator are aimed
at real-time systems, and none claim benefits for distributed systems. DCDS was
designed for both.

Three of the evaluated products are primarily personal computer products.
DCDS runs on fairly powerful workstations. That constraint makes sense, considering
its domain of large systems. Other products are supported much better than DCDS, but
DCDS is the only free product. Cost and support are obviously conflicting goals.

I

System Appearance

DCDS compares favorably with other products. With selection menus and
command files, text entry is more flexible in DCDS. DCDS supports novices by menus
and experts by command lines. The feature, unfortunately, is not available in the
methodology tool. Customization, however, is quite good in the methodology tool, but
not in the other tools. The tool menus, at least, need to be customizable. Excelerator
sets a good example in that area.

Like the other products, DCDS has a good command set. Some parts of DCDS
are not, however, well designed for human factors. Most of the other products are
much better in that respect.

4 Section1 IV

Tool Set E
a

DCDS' tools are the best in terms of methodologies and data-sharing, and
among the worst in terms of multi-tasking. While DCDS supports only one
methodology directly, it is the most flexible in terms of fine-tuning or major changes.
The others support formal methods with little room for change.

SA Tools and EPOS are noted for utilizing central databases. DCDS is based
on a similar data-sharing scheme, except the standard methodology is divided among
five parts. DCDS has good data-sharing between tools, but not between methodology
phases.

Teamwork has an excellent multi-tasking interface. It is possible to have two or
more windows open at the same time, working with different tools. DCDS allows only
one window at a time, significantly reducing productivity.

Excelerator and DesignAid include generation tools (screens, reports, and
limited code). Teamwork includes fairly good code generation. DCDS has none of
these tools. DCDS, along with several of the others, does provide documentation
generation.

Life Cycle View

This is one of DCDS' strong points. The standard DCDS methodologies
support the entire development cycle of software. EPOS is the only other of the tools
that comes close.

The DCDS standard methodologies support a system requirements level as well
as software requirements. Most of the other products concentrate on specification and
design. Few support implementation, although some provide varying degrees of code
generation. DCDS does not provide code generation, but does support implementation.
Testing is the phase in which DCDS really stands out. None of the others directly
support testing. Maintenance is not directly supported by any of the products, including
DCDS.

SectbIn IV

Prototyping is difficult to compare. Excelerator and DesignAid lead the others
in prototyping user interfaces (screens and reports). DCDS is the only tool that
generates simulation experiments.

4,

Database Support

As mentioned above in the "Tool Set" section, DCDS has a good central
repository scheme. Some of the other tools have a central data dictionary, with other
data decentralized (i.e., not available to all tools). Unfortunately, DCDS' database is
split into five parts corresponding to each of its standard methodologies, which hampers
cross-referencing.

DCDS is the only tool to include assumptions, decisions, and test plans in the
database. Like SA Tools, DCDS data can include pointers to external text files. Ibis is
a very useful feature to reference outside resources and avoid tedious data entry.

Information retrie•,al tools are comparable to the other products. Re-use of * *
information is somewhat difficult for lack of multi-tasking windows (as mentioned
above in the "Tool Set" section). DCDS' entity-relationship database scheme relies on
adding new relationships between data, not re-using data.

Real World Usability

This section covers DCDS' major problems. Multiple users, concurrency
control, version control, configuration management, and security are better supported by
DesignAid, EPOS, and Teamwork. These issues are particularly important because
they are integral to the database. DCDS is centered around its databases, and add-on
tools cannot make up these functions.

DCDS is weak in project management. But, most of the other tools do not
support management any better. EPOS is the exception. This deficiency could be
corrected with add-on tools and database extensions.

ILI

Sect~ion IV
-6-

System Help 6
DCDS' command files are a useful mechanism for consistency checking. DCDS

provides good context-sensitive selection menus. Unlike DesignAid and Teamwork,
DCDS does not have an error recovery function.

Relationship with Outside World

None of the products studied are easy to integrate with other tools. All of the
tools include some degree of data import and export.

Summary

DCDS is different from other products we have studied in its strengths and
weaknesses. The unique development atmosphere and government ownership may have
contributed to the marked contrast.

The basic design and flexibility integral to DCDS is far ahead of the current
market. The lifecycle view and database support address software engineering
problems well. These aspects were more evident in our earlier data requirements
evaluation [VARN9cJ].

Real world usability and user interfaces often determine winners at the
marketplace. DCDS is far behind others in pragmatic concerns and product
"slickness" (that is, power and ease of use). DCDS is flexible enough to change in the
long term, but it requires more work and problems in the short term. Users usually
concentrate on the short term.

DCDS shows promise, but still has several basic problems. Our final
recommendations will be given in the next step of our work.

.S xtion IV
-7-

References
a

[CABR88] Cabral, G., H. E. Dunsmore, S. Stratton, D. M. iage, and W. M. Zage. 0

"An Evaluation of Excelerator". Software Engineering Research Center
Technical Report SERC-TR-15-P. May, 1988.

[CABR88b] Cabral, G., H. E. Dunsmore, S. Stratton, D. M. Zagc. and W. M. Zage.
"An Evaluation of Excelerator". Software Engineering Research Center
Technical Report SERC-TR-16-P. May, 1988.

[STRA88] Stratton, S., W. M. Zage, G. Cabral, H. E. Dunsmore, and D. M. Zage.
"An Evaluation of EPOS". Software Engincering Research Center
Technical Report SERC-TR-28-P. September. 1988.

[VARN90aJ Varnau, S. and H. Dunsmore. "Software Development Information
Supported by Typical CASE Tools". Software Engineering Research
Center Technical Report TR-77-P. August, 1990.

[VARN9Ob] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by the SEI Contractor Assessment Questionnaire". Software
Engineering Research Center Technical Report TR-78-P. August, 1990.

[VARN90c] Varnau, S. and H. Dunsmore. "Software Development Information 0
Supported by the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-85-P. January, 1991.

[VARN9Od] Varnau, S. and H. Dunsmore. "Software Dcvelopment Information
Completeness in the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-86-P. January, 1991.

[VARN90e] Varnau, S. and H. Dunsmore. "An Evaluation of DCDS". Software
Engineering Research Center Technical Report TR-87-P. January, 1991.

[ZAGE87] Zage, W. M., H. E. Dunsmore, D. M. Zage, and G. Cabral. "A Tool for
Evaluating Software Engineering Environments". Software Engineering
Research Center Tecai,. R~ p',,, '•FRC TR 2-t,. Jul.., 1987.

[ZAGE881 Zage, D. M., W. M. Zage, G. Cabral. I1. E. Dunsmore, and S. Stratton.
"An Evaluation of DesignAid". Software Engineering Research Center
Technical Report SERC-TR-19-P. September, 1988.

[ZAGE88b] Zage, I). M., W. M. Zage, G. Cabral, H. E. Dunsmore, and S. Stratton.
"An Evaluation of SA Tools". Software Engineering Research Center
Technical Report SERC-TR-20-P. September, 1988.

cirt ion V I

Conclusions on the Suitability of DCDS as an I
Ada Program Support Environment (APSE)

S. Varnau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC-TR-89-P
January, 1991

Technical Report 3.6 from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract
I

DCDS is much better suited to embedded, distributed, real-time applications
than many popular CASE tools. DCDS has addressed software engineering problems
across the entire software lifecycle. The design of DCDS provides much of the
flexibility needed in an Ada Program Support Environment (APSE).

But, DCDS also exhibits several shortcomings. Most importantly better
database support functions are necessary to provide multi-user support. The user
interface also needs improvement. DCDS should provide an open architecture for
greater flexibility.

DCDS is not yet suitable to serve as an APSE. While DCDS use should be
encouraged to promote enhancements, mandated use is premature. Introducing DCDS
as it is now might not be beneficial in all environments and could be a hindrance to
some projects. After significant improvements, DCDS would certainly be an ideal
foundation for a comprehensive software project environment.

-2-
5* :tian V

Background

In our research concerning DCDS (Distributed Computing Design System)
suitability as an ASPE (Ada Standard Programming Environment), we have produced
six previous technical reports. We developed a list of data requirements for software
engineering environments [VARN90a]. For the purposes of developing those data
requirements and gaining a perspective on how well the requirements have been met in
the past, we compared several CASE (Computer-Aided Software Engineering) tools and
two papers related to CASE tools to our data requirements [VARN90a, VARN90b].
The next data requirements comparison rated DCDS itself IVARN90cI. That report
was followed by a discussion of DCDS from a data completeness perspective
IVARN9Od]. While that evaluation was data-oriented, functional and non-functional
requirements are also of concern. To address those issues, we utilized an evaluation
questionnaire previously developed by this research group [ZAGE87]. The
questionnaire was used to evaluate DCDS (VARN90e], and compare it to similar
evaluations of other products [VARN9OfI.

We now present our final recommendations concerning the future of DCDS.
We found both data-oriented and function-oriented perspectives essential in order to
gain a complete understanding of CASE tools and DCDS in particular. This research
and previous research has also given us firm ideas on the requirements for an ASPE or
any standard environment. 0

Requirements for Standard Software Development Environments

While developing our data requirements, we necessarily relied on an image of
an ideal standard development environment. The software engineering domain is large
and complex, with many, often conflicting, goals. Two overriding goals are product
quality and development efficiency. Those goals are difficult enough, but a standard
environment must, abovc all, be flexible.

Environment flexibility is manifest in the data collected and functionality
available. If a new type of project data comes into use, adding it to normal
environment operations should be an easy task for an end user or system programmer.
Likewise, a new tool should be easily integrated.

-3 -. 't~iin V I

In light of this goal, a standard development environment need be no more than
a foundation for a complete development environment, customizable for unique
vendors, departments, projects, and people. Different domains require very different
tools and processes, so an environment must support arbitrary tools. While it is 4
desirable that the original foundation come with enough data models and tools to be
usable as is, they should soon be customized, enhanced, or even superceded by local
and third-party tools. Those applications can be changed at any time. The primary
goal for the environment is to provide a solid foundation to build on, while providing a
common basis for wide-spread cooperation.

Customized environments may be very different from the original and one
another, but a project must be portable between environments and stable across
environment upgrades. A project is represented by the product and process data it
generates over time. Maintaining that data over long periods is important for several
reasons. Product maintenance and process improvement are primary concerns.

In our evaluation we have included many requirements beyond a foundational
environment, because a foundation must provide support for such data and functions,
and all environments, including DCDS, go well beyond a foundation in some respects.

Aside from the foundational model, our requirements focus on large, complex
projects. Such projects are the primary domain of software engineering.
Communication, coordination, and reliability are cxamples ol major problems. Smaller
projects and environments could benefit from some of the requirements, but they are
not the concern here.

DCDS as a Standard

As reported earlier [VARN90d. VARN90fJ. DCDS has made significant
advances in software engineering environment design. Unfortunately, DCDS 0' not
mature enough to stand alone as the primary tool in large projects. It fits our concept
of a foundation environment fairly well, but fails in the area of multi-user support.

DCDS meets our data requirements quite well. It is centered around a very
flexible entity-relationship database. This design provides a good way to capture
relationships (usually the mo:st difficult data to capture). Another benefit is that the data
model is modifiable and is part of the project data. Flexibility and portability are both
achieved.

4

Sectim V
-4- V,

The lack of configuration, version, and revision control are problems with the
DCDS database design. These are related to the lack of multi-user support. The
default data model division into live separate parts is yet another concern.
Relationships across databases are quite difficult to maintain, seriously hampering
traceability. It is conceivable that a complete data model could be combined into one
database. Efficiency may make that impractical. Note that these database problems are
foundation problems, i.e., no add-on :•ols can properly fix these problems.

As for functional and usability requirements, DCDS meets some well and others
poorly. The user interface has some good qualities, but needs some work. The benefits
of a windowing interface are nullified because the user may work with only one
window at a time. The methodology screens, reports, and consistency checks may be
customized by the user. These permit great flexibility, but do not provide effective
selection menus and alternate command modes as the non-methodology interfaces do.
The tool interfaces are fairly good, but are not customizable. They need to be flexible
to allow integration of new or specialized tools.

DCDS provides some advanced functions, such as a simulation generator.
These are good, but basic environment functions are more important at this point.
Another factor to consider is that the graphics and simulation packages are not as
general as the rest of the environment. They are dependent on the default data model.
They should be adaptable to new data models. Suggestions for achieving this are *
included in IVARN9Od].

The Future for DCDS

DCDS serves as an excellent prototype of an Ada Program Support Environment
(APSE). It is certainly better in most data collection respects than other available
CASE tools. DCDS lacks, however, a sleek user interface and other features now
common in other products. But, DCDS database design represents a huge improvement
over most. The temptation to enforce use of the best environment available should,
howes.vr, be resisted. The benefits would probably not be worth the costs at this point.
Standardization should be put off until further improvements and maturity of DCDS can
be verified.

Introduction of any tool requires training and support overhead. A primary tool
such as an environment requires a strong commitment by all participants to be
successful. The tool must make all users' jobs easier, or it will not be properly utilized.
Introduction of a marginal CASE environment may not produce benelits, unless

II

-i t~icn V

supplemented with other tools. Emphasis needs to bc placed on developing a good
foundation environment, and building from there. Continued improvement is dependent
on solid and long-term support for DCDS and those developing it. Actual use of the
environment is also very important to growth, providing valuable feedback to DCDS
developers. DCDS developers should also be users, using it to support its own
continued development.

DCDS needs better database support and an open architecture. All major tools
should be independent of a particular data model. The user interface can be improved,
providing flexibility and usability.

DCDS is not yet suitable to serve as an APSE. While DCDS use should be
encouraged to promote enhancements, mandated use is premature. Introducing DCDS
as it is now might not be beneficial in all environments and could be a hindrance to
some projects. After significant improvements, DCDS would certainly be an ideal
foundation for a comprehensive software project environment.

I 6

Sectien V-6- Sti

References

IVARN9Oa] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by Typical CASE Tools". Software Engineering Research
Center Technical Report TR-77-P. August, 1990.

IVARN9Ob] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by the SEI Contractor Assessment Questionnaire". Software
Engineering Research Center Technical Report TR-78-P. August, 1990.

IVARN90c] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-85-P. January, 1991.

IVARN9Od] Varnau, S. and H. Dunsmore. "Software Development Information
Completeness in the Distributed Computing Design System". Software
Engineering Research Center Technical Report TR-86-P. January, 1991.

IVARN90e] Varnau, S. and H. Dunsmore. "An Evaluation of DCDS". Software
Engineering Research Center Technical Report TR-87-P. January, 1991.

IVARN9f0 Varnau, S. and H. Dunsmore. "A Usability Comparison of DCDS with
Five Popular CASE Tools". Software Engineering Research Center
Technical Report TR-88-P. January, 1991. •

[ZAGE87] Zage, W. M., H. E. Dunsmore. D. M. Zage, and G. Cabral. "A Tool for
Evaliating Software Engineering Environments". Software Engineering
Research Center Technical Report SERC-TR-2-P. June, 1987.

